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IMPACT BUCKLING OF THIN BARS IN THE ELASTIC RANGE

HINGED AT BOTH ENDS

By Carol Koning and Josef Taub

SU!,_.MARY

Following the development of the well-known differen-

tial equations of the problem and their resolution for
failure in tension, the bending (transverse) oscillations

of an originally not quite straight bar hinged at both
ends and subjected to a constant longitudinal force (shock

load) are analyzed. To this end the course of the bar form

is expanded in a sinusoidal series, after which the inves-

tigation is carried through separately for the fundamental
oscillation and the (n-1)th higher oscillations.

The analysis of the fundamental oscillation distin-

guishes throe cases: shock load lower, equal to, or higher
than the Euleria:_ load.

The investigation of the (n-l)th higher oscillation

also distinguishes between shock load smaller, equal to,

or greater than the (n-1)th stability limit, although on-

ly the first case is of practical significance.

Shock loads in buckling are divided into the period

of actual shock and the period of free oscillations follow-

ing the actual shock.

The investigation leads to functions which are propor-

tional to the maximum stresses in time and space due to

the shock stresses in buckling. These functions are then

compared for the case of shock load lower than Eulerian
load with the maximum stresscs in static load. It is found

I!

*"Stossartige Knickbeanspruchung schlankor Stabs im elas-
tischen Bereich bei beiderseits gelenkiger Lagerung. "

Luftfahrtforschung, July 6, 1933, pp. 55-64.



2 _T,A.C.A. Technical '_emorandum No. 748

that the former are sr_aller for short shock periods and
vice versa; that is, in the extre2_e case, twice as high as
the latter.

From a comparison of the functions decisive for the
maximum stresses, it appears that the Eulerian load may be
safely exceeded in shock-like buckling stresses, provided
the shock period is sufficiently short; further, that,
whereas the stresses under shock load above the Euler load
show an unrestricted increase with the shock period, the
stresses in shock loads below the Euler load reach an up-
per limit which is not exceeded during any shock period.

The report closes with an analysis of the interdepend-
ence between the shock stress in buckling and the shock

impulse / P dr. It is found that, contrary to common be-

lief, the stress with equal shock impulse is sensibly af-

fected by the shock period. For that reason the determi-

nation of the stress stipulates not only the time integral
/ P dt, but also the shock force and the shock period-

a fact which is of essential importance from the experi-

mental point of view.

I. INTRODUCTI0i_

The analysis of static buckling stresses affords, as

is known, a problem in stability. It poses and answers
the question up to what limit the compression may be in-

creased for given bar dimensions without exceeding the

range within which an unequivocally definable Condition of

equilibrium existS. Several equilibrium conditions are

possible after this boundary has bedn exceeded. On ap-

proaching the stability limit the rise of the deformation

is such that the bar usually loses its carrying capacity

befol'e roaching the equilibrium condition. For this rea-
son, the determination of the stability limit is of de-

cisive importance.

Contrariwise, stressing a bar suddenly in buckling,

the suddenness Being the short-time interval between load

change and loading period, as shown in this report, the

stability limit is no longer as significant as in the stat-

ic case, and may be safely exceeded, provided the shock

period is so short as to leave the bar no time to deform

as would correspond to the static equilibrium condition.
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From this it follows that the calculation of the def-
ormations and stresses with respect to time is the primary
issue rather than the determination of the stability lim-
it when analyzing the shock load in buckling.

II. NOTATION

L kg,

D kg,

X=- P kg,

Y kg,

M kg m,

qd kg m- l

q_ kg m- I

m kg,

r m,

_y m_

£ m,

force component parallel to bar axis (x).

force component at right angles to bar axis

force component parallel to axis x.

force component at right _ angles to axis x.

bending moment.

outside force at right angles to bar axis

outside force parallel to bar axis.

moment loading of bar elements.

radius of curvature of the elastic line.

slope of the elastic llne.

deviation of bar axis from straight line in
unloaded condition.

"amplitude" of bar axis in unloaded condi-
tion.

deflection. (See fig. 2.)

shifting in direction of X.

S=/ P dt kg s, shock impulse.

E kg m-m,

m,

i m,

(See footnote, page 26.)

elasticity modulus.

length of bar.

radius of gyration of bar section.
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l_ m_,

J m 4 ,
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area of bar section.

inertia moz'_ent of bar section.

p kg sm m -4, density.

p S-I ,

-i
V " m S

a i

normal stress in

elongation in x

x direction.

direction.

time interval.

b, ,

period of oscillation of the free funda-
mental oscillation.

shock period.

frequency of oscillation.

velocity of sound in bar naterial.

phase lag.

C,

ratio of shock load to Eulerian load,

_t

ratio of shock period to oscillation period

of the free, transverse fundamental oscilla-
tion.

ratio of the maximum moments (taken abso-

lute) in the static and dynamic case.

proper values.

A,B,C,D,kI,!_ 2, constants.

Indices:

n=1,2,3,
0

E !

., .,, etc.,

-, _, etc.,

the natural numerals.

refers to quantities appearing with ten-
sion = O.

q_antities representa%Ive of the Eulerlan
buckling load.

dots over a sym_oi denote its let, 2d, etc.,

derivation in time rate.

dashes over a synbol denote its let, 2d,

etc. derivation with respect to a length
(x).
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III. THE DIFFZRENTIAL EQUATIONS OF THE SYSTEM

Within the curvilinear system of coordinates x y

the equilibrium equations for an element of the bent bar

of length ds are as follows (fig. 1):

(L + _Ljsds)cos d_0-(D + _D ds)sin d_-L+ql ds=0
(1)

L + _ de sin _+ D + 8D _-D+ ds=O (2)

M + 3-_ ds + L + U'6 /

+ (D + _ ds ds cos - M- ql ds= sin +

+ _ qd ds_ cos + m ds = 0
(3)

With r d _ = ds, where-by r = curvature radius,

these equations, upon d_0 -_0 and disregarding the infi-

nitely small quantities of the 2d and 3d order and with

sin d_ N d_

cos d_0 N I

reduce to

c_s " 1 D + q_ = 0
(la)

1L + 8B (2a)
_ + qd = 0

8M+ D + m= 0 (3a)

The deviations of the bar axis from a straight line

in unstressed condition as well as the deflections in the

processes analyzed hereinafter, are assumed small compared

to the length of the bar, and the choice is a rectangular

system of coordinates x y such that in first approxima-
tion axis x coincides with the axis of the bar in un-
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stressed attitude.

components in the curvilinear system

components in the rectangular system

or, SinCO

As a result:

Then the relations between the force

_ and the force

x,y are

L = X cos _ + Y sin

D = - X sin _ + Y cos

c_ = sin (z = tan (z = yl,

a__= I= y,,
dx r

d_x= cos _= I
ds

L = X+ Y y I

D=- XyW + Y.

L

3D _DX yl + _Y y,,_-_=- _ _- x

8M_ 3M
3s _ "

These terms are written into (la) to (3a), whereby,

omitting the sr_all quantities of the 2d order, the equi-

librium equations for the slightly bent bar become:

_X + 8Y y, + = 0 (Ib)
8x _K q_

_3:._A_X y' + v + m = 0 (Sb)

By eliminating Y they reduco to .... "

i

/

1
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_L

8_X . y,
8x qd + q_ = 0

C4)

-_ _ ".
_--_- x y,,- qd + _ = 0 (5)
8x _ 3x

Assuming zero outside load at the bar element, i.e.,

_q_ and qd to be mass forces of the bar element and m

the mass moment of the bar element qd yl are negligible
relative to q7 , because, first, in sufficiently thin

bars the oscillation frequency and through it the mass ac-
celeration in transverse direction is small relative to

the corresponding quantities in the longitudinal direc-
tion; second, yv is a small quantity according to the

premises.

Thus the differential equations read:

_X + % = 0 (4a)

32M X y" 8m = 0 (Sa)

Now y is the deviation of the bar axis from straight

llne in unstressed condition and _ is the deflection, so

that y + _ must be substituted for y in (5a) (fig. 2).

X and M are expressed in terms of deformation:

X= OxF= E F _=EF_

M = E J _n
8x 2

and the mass forces q_ and qd'
as

q_ . _ F_= 8t _

and the mass moment m

qd =- P F _-_
Dt _

m = -p J -_-
8x#
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Herewith (4a) and (5a) become:•

• E _x _ - p _ = 0 (4b)

,. _x_.jV: \S_, _- + + pF - pJ 'rl =. o (561)

_-.-_:.;.Tt_ese twO equation_ (4b) and (Sb) constitute the dif-

ferenti_l'_uations of the _uckling stress due to shock
_ef a bar'with constant cross-sectional dimensions.

"" IV. SOLUTION FOR A BAR HINGED AT EITHER END

_ne Free Longitudinal Oscillations of the Bar

We repeat the well-known formulas for the free longi-
tudin_l oscillations of a straight bar. They are obtained

by resolving (4b) conformably to the generalized equation:

= (A" sin kx + B cos ix) (k_ sin po t + k_ cos pot)

The bar is assumed to be clamped or fixed at one end

but left free to move longitudinally at the other. Then

the boundary equations are:

= 0 for x = 0

8__ X 0 " x _.
8x EF

B=0

reducing the equation to

= sin )_x (k_ sin po t + ks cos pot).

Double differentiation according to

"

t_

because of the first boundary condition, thus

x and t affords:

which, written in (4b) gives
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where

- k_ E + po2 p = 0 Po = kJ _ = v )_,

v = is the velocity of sound in the material•

Furthermore, because of

= k cos )_ x (kl sin p t + k2 cos p t)

together with the second boundary equation we have:

)_n = -'_'- 3_TL 2n- I2_' 2_' ..... 21 _e

Consequently, the frequencies are:

TT 3_
"""" V9 _ V_ • • • • •

Pon - 2_
2n- I

2_
17 V

and the period is

To n = 2__ = 4 _- 4 I 4
p v' _v' ..... 2n- I v "

2. The Free Transvorse Oscillations of the Bar

Disregarding the rotatory inertia for the case of

X = 0, equation (Sb) becomes:

_x _ 8t 2 =

The generalized solution _s':

= Z sin (Port t + _n ) (A n sin kn x + B n cos kn x +
n

+ Cn sh _n x + Dnch )h_ x).

The insertion of

8_n 8S_n

and _-'_z = -Pon 2 _n

in (6) gives

Pon = =
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The boundary conditions for the bar hinged at both
ends read:

,rl = O,

8 x _

x = 0 and x = _,

thus modifying (6) to

= Z _n = Z A n sin (Pn t + _n ) sin k n x
n n

('_a)

whereby

kn Tr 2_ nTr=f' T' ' ....

By virtue of (7) the frequencies are:

Pen = 7_," _ -_-_--pF .... -7--_,pF .-T_- v i,

where i : radius of inertia of the cross-sectional area.

As a result the oscillation period of the (n-1)th higher

oscillation is :

2 TT 2"_ _

... .... = n2 "T°n Pen _ v i

The ratio of oscillation period of the transverse and

longitudinal oscillations for the fundamental harmonic

(n = l) in the bar hinged at both ends to that of the bar
left free to shift longitudinally at one end, is:

2 12 v I

_ v i 4_ 2_ i

For slenderness ratios _ > 2_ the transverse oscillations

are consequently of lower frequency than the longitudinal
oscillations. _

3. Transverse Oscillations Due to Constant Shock Load

Here we analyze the specific case of a bar hinged at

both ends being stressed under constant shock load X dur-

ing a shock period 7. We idealize the case by disregarding
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the longitudinal oscillation, i.e., assume the tension
(normal force) to be identical at every point of the bar
during the period of shock. With the neglected rotatory
inertia the resolvable partial differential equation is,
according to (6b):

EJ _x4- - X _x_ + pF _-_j- X _x_- = 0

The deviations of the bar axis from a straight line,

i.e., the original bar form, are expanded in Fourier se-

ries conformably to the local function sin k n x of (7a):

y = Z _n sin kn x = ci sin k x + ¢_ sin 2 k x + .... +
-- 11

+ cn sin n k x + (9)

where k = _- is the first proper value of the free trans-

verse oscillation (see section IV,2) and cn = constant.

Equation (8) resolves to

= Z _tn _xn = T]tl sin k_ x + _t2 sin k 2 x + .... +
n

+ _tn sin kn x ÷ ....

= _tl sin k x + _t2 sin 2 k x + .... +

+ _tn sin n k x + .....

where _t = f(t)

nx = _(x).

Putting these values of y and _ in (8) gives

EJk_ Zn
n

_tn sin n k x + X kz 7 n _tn
n

sinnk x+

d2_tn
+p FZ

n dt 2
sin n k x + X "_- 7, n_ cn sin n

n

k X = O.

The equation for the fundamental equation is:

_tl + X k2 _tl + P F -_K _- + X
Q = 0 (lo)
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and for the (n-l)th hlgher oscillatlon:

d_tn +n _ X k_ £n=0 (II)
n EJ x  tn+n X f  tn+P,F --/t

These equations are v_lid d__r!_ the actual shock pe-

riod. A_fter_ the shock the bar executes free oscillations
whose initial conditions are contingent upon the deflec-

tion and rate at the termination of the shock.

a) The fundamental oscillation

The Zulerian buckling load for the bar hinged at both

en_s and Subjected to static load (see also V) is:

By denoting thc ratio of shock force to Eulerian load

with a, or in other words, presume

X
i a = .... ,

PE

X = - a E J ._

p F dm_t k_
dt_ -+EJ

and (10) becomes

(1 - a) nt = a c _ J X_

(l_)

(14)

index 1 being omitted for simplicity.

The resolution of this equation must differentiate

between three cases:

I. X > - PE' that is, a < 1

2. X = - PE' " " , a = 1

3. X < - PE' " " , a > I •

@) Shock load lower than the Eulerlan load*

(a < I).

*This also includes all cases with negative a, that is,
the cases of shock stresses in tensi0n.
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Putting _t = _t + _t in (14), where _t denotes the

resolution of the homogeneous equation and _t the effect

of the disturbing function, the resolution Of the homogene-

ous equation

d _t

gives _t = kl sin p t + ks cos p t,

b e cau se _-J-_ (I- a) >o.
pF

Consequently,

d=-t__ ps nt
dt 2

The insertion of these values in the homogeneous equa-

tion gives the frequency:

p f a
= d #_ w • - a = Po (15)

where Pc = frequency of the free fundamental oscillation
(see IV,2) .

The effect of the disturbing function on the right-

hand side of (14) is found from

Ejx _ (l-_)_t=_cEjx _

at

r_t = a .¢.
1 - a

Consequently,

_]t = kx sin p t + k2 cos p t +
a

I - a
c (16)

whence,

_t = P (kl cos p t - k2 sin p t) (17)

Assuming _t = 0 and _t = 0 for the start of the
shock, t = 0, (16) and (17) give

ks + a ¢ = 0; k_ = - a ¢; k I = 0.
• i- a I- a
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The solution is:

a c (1 - cos p t) (IS)
_t - I - a

and consequently,

a ¢ p sin p t (19)
_t- l_ a

Let T = shock period. Then at the end of the shock:

a c (l - cos pT) (20)
"0_'= 1 _ a

_T - 1 -a a ¢ p sin p • (21)

The incipient free oscillations following the end of
the shock are, according to (6):

= _t _x = C sin (Po t + _0) sin k x (22)

with _ = phase shifting. For this period of the processes,
(20) and (21) are the initial equations. Thus,

C sin (Po T + _) =
a

i - a
(I - cos p T)

C Po cos (Po T + _) -_
a

I - a
¢ p sinp7.

The addition of the squares of these equations gives:

0 s _ as )z Pz
(1 - a)_" ¢_ [(I - cos p T + --_-sin_ p _]

Po

or, with due regard to (15),

I -- a
C J2 - 2 cos p T - a sin s p 7.

We use the oscillation period of the free oscillation

T = 2_U_ as time scale and introduce
Po

•r = b T = 2-_- b,
Po
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so that p T = 2 N b_/_- a, and

a ( TT b_l-a) - a sin e (2 TT b/l-a).
C - i_ a

Our interest centers about the maximum bending moment

whiqh is proportional to the maximum curvature (Sz_/Sxm).
Formula (22) concedes

8_ - C ks sin (Pot + _0) sin k x.
_x 2

The curvature is maximum in the center of the bar

(x = _) and amounts to

= _= ¢ --f (amax = C k_ C _ _
ox- T

where

cos(2_b IJY_-a)-as_n=(2_b JV--&] (23)

This value is decisive for the maximum moment after

the actual shock period. However. it may happen that a
still greater mome:,_t occurs du_rin_ the actual shock period.
Such is the case _d_cn the shock lasts at least long enough -

until the highest possible deflection has been reached once.
According to (18). the greatest possible deflection during

the shock occurs once when cos pt = -1. Consequently, if

T__= ___ 1
P Po _- a

or

b_
I I

pT _I- a 2_/I - a

the maximum moment is already reached during the shock.

On the other hand, according to (18),

a

_- 1- a
(i - cos p t) sin k x

during the shock, hence
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---= c = c f(a,b)
max 8x 2 2 1- a _" '

is approximately proportional to the maximum moment, whereby

._. .- .... Z(a,b) = 2 a (24)
I - a

I
", formula (23)

To sum up: For shock periods b < 2jl - a

is valid; for shock periods b _ _l (24) is the de-

cisive quantity for the maximum moment. For -b- I
2

(23) steadily resolves to (24). The latter represents an

absolute maximum value of f(a#b), which may not be ex-

ceeded with any shock period,

_) The shock load equals the Eulerian lead (a = 1)_

.... In this case (14) reduces to

d2_t EJ _4. .

dt s pF

Integrating twice gives: _:. ,_

EJ )4 _ t2
_t - 2pF + k_ t + ks.

The initial conditions:

_t = 0 and _t = 0 for t = 0

concede k_ = 0 and k_ = O. Therefore,

nt _ EJ k4 £ tm (25)
2pF

and for the end of the shock,

EJ k4 ¢ T2 (26)
_t - 2pF

and
_t = E_J %_" c 'r

pF
(27)
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The time Intervsl after the actual shock is again com-
puted with (22) and the initial conditions for this shock
period are posed in (26) and (27). Thus,

__EJ"
C sin (Po T + q0) = 2pF

C Po cos (Po T + q0) =
pF

C T_

E T

hence,

C T2 _I
EJk --+
pF 4 po 2

or, when taking

v = 2__ b and EJ k_ = Po
Po pF

into consideration,

C = 2 N b c Ju 2 b 2 + i.

Equation (22) again yields

max _x _ = C

1_2

= E --_ fCa,b),

where

f(a,b) = 2 TT b JTT 2 b 2 + 1 (28)

Contrary to the case of a < I, equation (25), appli-

cable during the shock, is now aperiodic, hence the deflec-

tion during the shock may not exceed that at the end of the

shock. But the latter is, conformable to (28), the start
of the free oscillation.

7) The shock force exceeds the Eulerian load (a > l)

In this case,

EJ (1 - a) < 0,
pF

and the solution of the homogeneous equation corresponding
to (14), manifests:
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whence,

_t = k l sh p t + k2 ch p t,

Cl_-
_t _

which, written in the homogeneous equation, gives

= EJ k_ (a- I)= pJ (a- l)
p= p--F-

(29)

Pc = frequency of the free fundamental oscillation.

Ejx _ (l- a) gt =ac EjX _

concedes the particular integral _t at

-- a

_Tt =" a - I ¢"

Consequently,

a

_t = kz sh p t + k_ ch p t - a - I

_t = P (kz ch p t + k 2 sh p t)

(3o)

Assume _t = 0

and (31) give

and _t = 0 for t = 0.

a
; k_ - ¢ and kl = 0

1a

Then (30)

whenc e,

_t = a ¢ (ch p t - I)
a - 1

(32)

a c p shp t.,
t - a- i

and for the end of the shock t -- T:

--A =__
_T= a- i

a
, T- a_ I

c (chp • - I)

¢ p shpf

(_3)

•..(34)
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For the free oscillations after the shock (22) and

_the initial conditions (33) and (84) are again applicable.

Then,

C sin (Po _ + _) - a
a - I

c (chp T- I)

" - +_ a c p sh p 7
C Po cos (Po 7 ) = a- i

and, with due allowance for (29)

C = a ¢ /2 _ 2 ch p T + a sh_ p7
a - I

or with
P

p 7 = 2N b
Po

- 2N bja- i,

C __

a - 1
¢ J2-2 ch(21_b_/a-l) + a sh2(2TTb Ja- I).

Acaording to (22) the maximum curvature is again

max _ C _ = c f(a,b)
8x

where

f(ab)- aa-1
_2-2 ch(2TTb_/a-l) +a sh2(2ub_) (35)

Since (32), applicable during the shock, is aperiodic

for _t and increases with t, no greater deflection can
occur d.u_r_In_the shock than the maximum deflection reached

after the shock; but that is comprised in (35).

b) The (n-l)th higher oscillation

Substituting X = - a E J km, equation (Ii) becomes:

p F d2_tn + n2 E J _ (nm-a) _tn n2 _ _n 6)
dt 2 = a E J (3

Again we differentiate between:

l, a < n _

2, a = n 2

3. a > n s
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of which the first is of primary interest. Even with the
first higher oscillation (n = 2), cases 2 and 3 refer to
shock loads at least 22 = 4 times as high as the Eulerian
load. Such excesses of the Eulerian load may be disregard-
ed and the analysis confined to a < ns.

The resolution of (36) for a < n _ is similar to that

of (14) for a < 1. Let the solution of the homogeneous

equation be

_tn = kl sin Pn t + k s cos Pn t

so that

d _tn _ -
dtx " Pn _ _tn

whiah gives the frequency

- n X .......
•_ a = n Pol n_ - a (37)

Po_ j_ frequency of free fundamental oscillation. (See
Bec_Ion IV,2.)

The effect of the disturbing function follows from

n_ E J ?_ (n _ - a) _tn = n_ a E J _ cn

at

\_tn = ns a

whence the solution of (8) at

a

'rltn = kl sin p t + k2 cos p t + ne . a gn '

kl and k2

= 0 and
_tn

a

_tn --" Il2 - a

are again defined from the initial conditions:

_tn = 0 for t = 0. The result is

Cn (I - cos Pn t) (38)

@

_tn = a
n 2 -- a

Pn Cn sin pn t - Po_ Cn sin pn t
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For t = 7, we have:

_7n -

a

n 2 - a
Cn (I - cos Pn T) (39)

n a Pol Cn sin Pn T
, , _Tn- jn2 _ a

After the shock the bar executes the (n-l)th free

higher oscillation, which is governed by

(4o)

_n = Cn sin (n 2 Pol t + _0n) sin n k x (41)

With C and _ defined from (39) and (40) as initial con-
ditions:

On sin (n 2 Pol 7 + _0n) =
a

2

n -

Cn (I - cos Pn T)

On n2 Pol cos( nm Pel _ + _n) :
n

J n - a
Pol Cn sin Pn 7

gives C

Cn =

at

a___a.... £n 2 - 2 cos Pn 7 - _- sin
n 2 - a

Pn 7.

when

Because of (37) it is

pn 7 = 2 n _ b Yn 2 - a

T = 2_!! b. Therefore,
Pol

CI_ = a cn /2-2
n 2 -- a

a

According to (41) the curvature is

82nn =8 _ " Cn n2 )_m sin (n 2 Pol t + Sn) sinnk x

and the maximum curvature,

TT2
a_n n_ X_ _ cn f(n a,b)max _-x-_ = Cn = , ,
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where f(n,a,b) =

..........ns a 2-2 cosr2n_b_/_-a_,-1 - a- --_-sin_(2n_b/nV_-_) (42)
n_-a n

The validity of (42) for the maximum moment is decis-

ive only when it occurs after_ the shock. If the actual

shock lasts at least long enough to permit once the occur-

rence of the highest possible deflection, then the maximum

momen_ _occurs during the actual shock. This is the case

according to (38) when cos Pn t = - I, that is, when the

duration of the shock is

or

T_> n _ _ I

- Pn n _o_ Jn _ - a

>
b =

I

2 n_ - a

In this case the curvature is

8_n a

-_-_- n_ - a % n_ _,_(I - cos Pn t) sin n k x

according to

_n -
a

n 2 -- a
£(i - cos Pn t) sin n k x

and the maximum curvature is

m_ - -_-f(n,a,b),

with
2 a n 2

f(n,a, b) = .......
n 2 - a

(43)

Summed up: for shock period

b <
1

2 n_/Vn e - a

equation (42) is applicable; : : ,;._ : . .... , - _:_
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L: - • •

for

b__> 1
2 n

(43) is valid as the quantity deciding the maximum moment.

1

'i When b- 2 n _- a' (42) becomes (4S). The lat-

ter represents the maximum value of f(n,a,b), which is

not exceeded in any shock period.

, . .-

V. NUMERICAL INTERPRETATION AND DEDUCTIONS

The behavior of the bar during shock load is best eval-

uated by comparing it with its behavior under static load.

The differential equation of the static load is:

2

(44)

with y given from (9).

the resolution gives:

Limited to the first term of (9),

= CI sin k x + C2 cos k x

or = C_ sin k x (45)

since _ = 0 when x = 0.

. Putting (45) in (44) gives k = _

c
01 = 1 ,

EJ_

X %_-- I

consequently,

for

¢i sin k x

_=
_ E_ J TT I

X _2

U2
- X = PE = E J i"_-,

and

(46)
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!I

that is, the Eulerian 10ad, _ = Qo. Therefore, and with

consideration of (13),

a
¢I sin k x

'n- l_ a

whence

max _ : _- c_. _'(a)
a

with f(a) - I- a"

(47)

The ratio c of the moments due to shock load and

static load is:

c = j_- 2 c0s(2_bJl- a) - a sln_(2_#_- a) (48)

according to (23) and (47) when a < I
the shock is

< I

2Jl - a

and the duration of

and c = 2

according to (24) and (47) when the shock period is

I
b _

(49)

It is readily seen that the c terms are dependent on
the magnitude of the eccentricity £. (See fig. 3.)

It will be noted that the ratio c of the dynamic and

static stress for short shock periods is smaller, at longer

periods greater than 1 and its maximum value 2. Moreover,

for equal shock durations, ratio c is smaller as the

shock load is higher.

When plotting, as in figure 4, that shock load b
against shock load a for which the dynamic equals the

static stress, it is seen that comparatively long shocks

are necessary vicinal to the Eulerian load to raise the dy-
namic stress on a level with the static stress. With a

shock equivalent to 0.97 times (approximately) the Eulor-

Jan load, this shock period equals the natural oscillation

period of the free bar.
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If the form of the bar is such as to exactly produce
i th01 (n-1)th higher harmonic by the same argument the nth

Stability limit is

_ x=Ej -u

when the bar produces only the fundamental oscillation and
..the decisive function for the maximum moment is

2

f(a,n)- n a (50)
n_ - a

When

2 n_ - a

the comparison with (42) and (43) gives

and c = 2

when

b > 1

2 n_N 2 -- a

The range of validity of (51) is limited to very short

shock periods. Even for n = 2 and a = I, the upper lim-

it of b is 0.144 only. Since for very short shock peri-
ods the premises of the calculations are in any case hard-

ly met (reference I), the evaluation of (51) may be for_-

gone, especially since the case where exactly only the
(n-1)th higher oscillation occurs, is practically without
significance.

By contrast, the case where the bar shape is such as

to incur several oscillations concurrently, is much more

important. But obviously this case does not lend itself
to general treatment, because the results are substantial-

ly affected by the relative magnitude and the sign of cn
in (9).

......... The resolution of (44) is applicable only to the cases

for the evaluation of the data of the dynamic investiga-

tion in which the load lies below the stability limit, i.e.,
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for n = I in the a < I range; for n = 2 in the a < 4

range, etc. For loads above the stability limit (44) should

be disregarded in favor of the more exact equation of the

elastic line, the resolution of which is, however, quite

complicated. For that reason the comparison of the data
is limited to n = 1 for a < l, a = I, and a > I, re-

s_ectively. The results are illustrated in figure 5, in

logarithmic scale. The functions f(a,b) from (23), (24),

(_8), _and (35), proportional to the maximum moments aze

plotted for divers a against b.

'-.: It is readily seen that the Eulerian load may be ex-

ceeded in buckling stresses due to shock, provided the

shock period itself is short enough. }_oreover, the maxi-

mum dynamic stresses are fostered by increasing shock load

a and period b. 3ut, while attaining a limit value for
shock loads below the Eulerian load (a < l) for a given

duration of shock, which cannot be exceeded in any shock

period, they increase arbitrarily at shock loads above the
Euler dan load.

VI. EFFECT OF SHOCK iI_[PULSE J P dt 01_ THE STRESS

Frequently it is assumed that the stress due to shock

load P is de;,endent only on the shock impulse / P dr,

that is, individually unaffected by the magnitude of the
shock load and the duration."

The results of the present paper disclose the error

of this assumption, for otherwise only the product a b
would appear as sole variable of the terms for f(a,b).

_gain, it r.a_, be asked whether or not it would be approxi-

mately correct. For that reason, we compute the functions
f(a,b) versus b for several values of S = / P dt = ab.

*:It is common practice to designate the time integral

/ P dt as "shock load," whereas the quantit_ P is not

specifically expressed. This practice is probably due to
the concept that only the time integral _ P dt is decis-

ive for the shock process, whereas no special• importance

attaches to quantity P. But the authors of thls paper

have, on the strength of their investigations, drawn dif-

ferent conclusions, and believe it, in fact, to be more

logical to express P, which has the dimension of a force,
as "shock load" and time integral / P d_ with the dimen-
sion of a force times time interval as "sllock impulse."

F
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; Concentrating on the fundamental oscillation, there

are three rahges of b for a stated value of S = ab:

i. range 0 < b < b I for a > I.

2. " b I < b < b_ for a < 1 to the
extent that the maximum stress occurs

after the actual shock period.

3. range b_ < b when the stress occurs

durln_ the actual shock period.

The values for

lows:
bI and b2 may be defined as fel-

a = I for b I, consequently, b i = S;

1
b s - for b2,

2_I- a

or

because

1 +JS_
b 2 = _ (S + l)

S

b_

For f(a,t):

equation (35) is valid in the range of 0 <b <b_

" (23) " " " " " " bl < b < b

" (24) " " " " " " b_ < b

'! (28) 11 ,! 11 . I! . b -- b i

ting b
Then,

lira f(a,b)=_ sh_ (2 _ JS b - b_) =
b=0

- _ s (s - _,b)_h (4_ _/ s b - b_) _

JS b - b _ 1

The value of f(a,b) for b = 0 is obtained by put-

a = S in (35) and permitting b to approach zero.

2 17 S.
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With these fornulas we computed f(a,b) for S = 0.25|
0.50, 0.75, 1.00, and 1.25, as well as for various b val-

ues. The results are plotted in figure 6. The ordinates

of the individual curves are noticeably not approximately

constant with the parameter S or, in other words, the

stress due to a shock load cannot even be approximately
given in function of the shock impulse. 0D the contrary,

shock load and shock period must be individually known
if the shock stress is to be determined.

This result is of great importance for shock tests.
Shock load and shock period must be included in such ex-

periments, although this will be more difficult to accom-

plish than recording the shock impulse.

APPENDIX

Effect of Minor Changes of the Original Bar Shape

on the Results

The premise of the interpretation of the results was

the selection of the original bar shape such as to precise-

ly insure the occurrence of the fundamental oscillaS:.on

due to shoc1_ load. In the example hereinafter, we at bompt

to show the effect of a minor change in the original shape

of the bar on the results. For simplicity the range is re-
stricted to a < I, that is, to the range within which the

ratio c of the dynamic and static stress is readily ob-
tainable.

We assume the shape of the bar such as to develop
aside from the fundamental oscillation, yet the second

higher oscillation. Then (9) reads:

y = ci sin _ x + cs sin 3 _

with _--= k.

For shock periods_

I
b- ......... ;

the equation

b> I I

-2njn 2 - a 6j9- a



N.A.C.A. Technical Memorandum No. 748 29

is particularly applicable.

the maximum deflections occur d__qurin_gthe shock.

vature of the elastic line is expressed by

' 18-_' =[Sx_, a, _ [ ---CA'l- a (i- cos p t)sin k x +

+ 9 - a (I - cos Ps t) sin 3 k

According to IV,Sa and IV,Sb
The cur-

(52)

The points of the maximum and minimum values of this
funct'ion result from the resolution of

= a k3 (I - cos p t) cos k x +
1 - a

It+ 9 - a "(I - cos Ps t) cos S k x = 0 (SZ)

With

cos 3 k x = 4 cos s k x - 3 cos k x

(5S) resolves to cos k x = 0 (54a)

and

c 27 c
___l_ (1-cos pt) + .... a. (1-cos pst)(4 cos2kx-S)=0 (54b)
1-a 9-a

i of (54a).First we consider the maximum for x = 2

Here (52) gives:

gZE = a --- (l-cospt)l-a 9-a

To the extent that Its = (:i,

_-J-a ' the limits of the maximum curvature are

l:a 9 = _- = 2a 1L-q

hence 9 - a -

(56a)

when c 1 and cs have the same sign, and
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when ¢i and cs have different signs.

_ Comparing these results with the value of the curva-
ture at x = _/2 in the static case

af i-a'9

the ratio c of the dynamic and static stress is found to
lie betweon

,. c1 (9 - a)
2< ° < I I'= = 2 ¢I (9 - a) - 9 ¢s (I - a) (57a)

when £1 and cS have the same sign. and

2
¢1 (9 - a) - 9 cs (1 - a) < c < 2

(57b)

when they have a different sign.

This leaves the question, whether or not .at some

point other thnn x = _ an upper limit of I_-__ may._X m_x

occur which exceeds the values given _n (57a) and (57b).

I _ri may occur atSuperior limit values of _x-2-max

• i only when x meets equation
points other than x = 2

(54b). Let xI be a real root of this equation. Then

3 I 9 - a ¢I I - cos p t
COS _ )% X I = _ -

4 108 1 - a ¢3 1 - cos pst

sin Z k x I = sin k xl(-l+4 cos e k x_) =

= sin k xi(2 1 9-_ ¢_ l-cos p t)27 1-a ¢3 1-cos p

Then, according to (52) the curvature at x = x_ is:



N.A.C.A. Technical Memorandum No. 748 31

X--X l

I k_ |2 __£___ (1 - cos t) +

r

= a sin k x_ L 3 1 - a
p

+
18 cs

9 -- (I- COS pst)l I (58)

The upper limits of (58) are"

n <= 2a _ sin k x_ _ 1 a (,59a)

when ci and cs show the same sign, and

< 4f
3

-_--'C--I-sin k xll
I --a i

(59b)

when otherwise.

The requirement that the curvature at x = x I for
equal signs ¢I and cs shall at the most be the same
as the maximum value of (56a) results in

+ = 2a .2a k2 sin k x I I - a 9 - i - a

This condition is always meS:

2 (I + 18 ¢sI <= I cI3 i- a 9- a I- a

i. e.. for

= - (60)
6

because

I - a< i

9 - a 9

For different signs of cI and cs
similar, according to (56b) and (59b):

14 k_ a ¢, sin k xll < 12a ka ( ¢_3" 1 "a = i--'Z-a.

the result is

This condition is met for every value of
readily be seen.

cs as can
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Figure 3.-Rati0 c of maximum moments under dynamic and

static load versus ratio b of shock period

to period of free oscillations for various ratios a of

longitudinal force to Eulerian load.
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Figure 4.-"Shock period" b for divers "shock loads" a,

for which the maxi_ram dyn_nic and static

stress are equal, i.e. c = 1 .
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Figure 5.- Quantity f(a,b)

proportional to
the maximum moments plotted

against "shock period" b,
for various "shocl< loads" a.
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Figure 6.- Stress f(a,b)
versus "shock

load" b, for various

shock impulses S= f(a,b)




